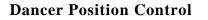
Copyright Bardac Corporation 2004 Except for the purpose of supporting products sold by Bardac Drives, reproduction of all or any part of these documents is strictly prohibited.


Bardac

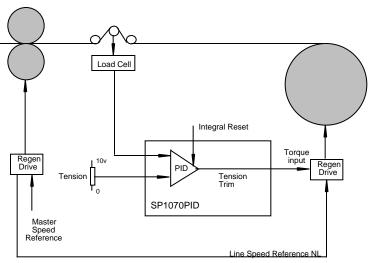
SP1070PID Basic PID Controller

Loadcell Tension Control

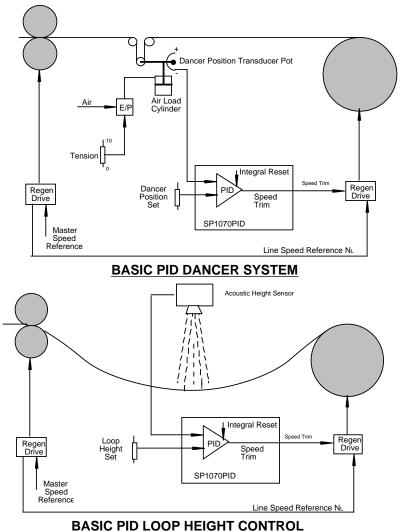
In this application the SP1070PID provides constant tension control by means of loadcell feedback trim of the reference speed.

This method of tension control can be used either with a medium performance center winder (as illustrated), or between nip rolls, or with a surface winder.

Here the SP1070PID is used to control dancer position by sensing arm movement and trimming drive speed.


Tension is adjusted by changing the load on the dancer arm (usually by means of a low friction air cylinder or balance weights).

This method of control can be used either with a medium performance center winder (as illustrated), or between nip rolls, or with a surface winder.


Position Control with Acoustic Sensor

This application is a noncontacting method of controlling the height of the web for use where the surface could be marked by a conventional dancer or idler roll.

Other applications for the SP1070PID include position, height, and fluid level control.

<u>Model SP1070PID</u> - Basic PID Controller -

SET-UP PROCEDURE

1. Reference Documentation

- 1.1 SP1070PID Block Diagram 500298, wiring and assembly drawing 500299.
- 1.2 SP1070PID configuration drawing HC101767, & basic specification sheet UG101496.
- 1.3 Drive Manuals

2. Installation

- 2.1 This equipment incorporates high voltage supplies, and powerful machinery which are potentially very dangerous, and it is very important that the installation and set up must be carried out by qualified personnel.
- 2.2 The installation and set up for this winder system are written for use with Bardac drives and are not necessarily appropriate when used with other manufacturers' drives.
- 2.3 This equipment must be installed in a suitable electrical enclosure with the required protection, control, and operator components. It is the users responsibility to complete the system design, and to ensure that all applicable codes are met.

3. Setting Up The System

Please read the entire setting up instructions before starting the procedure to familiarize yourself with the general requirements.

- 3.1 Before attempting to proceed with the winder configuration and start up, disconnect the drive from this equipment and fully complete its start up in a basic speed control mode according to the instructions in the drive manual. Normally the drive should be configured to prevent accidental reverse operation if it is a 4-quadrant, regenerative controller.
- 3.2 Select correct AC supply voltage tap the card modules.

3.3 Initial settings for the equipment:

SP1070PID_Card Settings:

Ramp Input Offset Differential Gain Integral Zero Proportional Gain	MIN<<<< >>MID<< MIN<<<< >>MID<< MIN<<
Integral Reset	OPEN
External Components	

Operator Position/Tension Reference Pot MIN<<<<

3.5 Set the Operator Reference Pot to MIN<<<<, and check that the input at terminal 17 is 0v.

With 0v on SP1070PID card terminal 17, and with no load on the Load Cell or with the Dancer in the fully extended position, adjust the Input Offset Pot to give 0v at terminal 16.

3.6 With the Prop Gain pot set to zero on the SP1070PID card, close the Integral Reset and check that the voltage on terminal 9 is 0v. Open and close the Integral Reset contact and observe the drift of the output at terminal 9. Adjust the Integral Zero pot to give minimum drift when the Integral Reset contact is opened. Remember that if there is a diode clamp on the Integral Output that will prevent the output from going negative, the drift should be set to be slow positive.

3.7a <u>Tension Control</u>

Check the polarity of signals to ensure that increase in Load Cell output gives decreasing motor current (torque) demand signal.

OR...

3.7b <u>Position Control</u>

Check the polarity of signals to ensure that rising loop or dancer output gives decreasing motor speed demand signal.

3.9 Check the set up of the rest of the system, splice sequences, standstill, hold, preset logic, jog, winder direction of rotation, etc.

4 Powering Up The System

4.1 Use extreme caution when powering up and be prepared to stop the drive at all times during this phase.

- 4.2 Thread material through the machine with all power turned off.
- 4.3 Take up material slack,
- 4.4 Turn power on

4.5a <u>Tension Control</u>

Set low tension, start winder and check the standstill tension

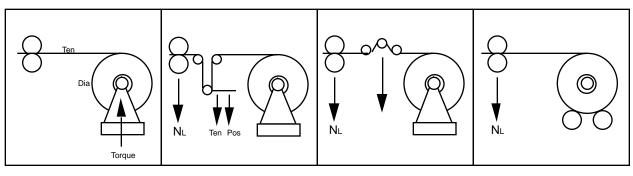
OR...

4.5b <u>Position Control</u>

Set low position reference, start winder and check that the winder applies tension and controls the dancer height as required.

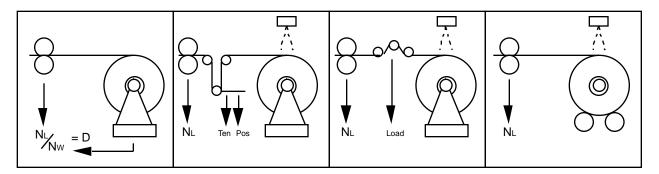
Adjust the position reference to set the dancer about mid position.

- 4.6 Set slow line speed and start line. Adjust PROP GAIN and DIFF GAIN terms to give stable winder performance with repeated Line Start/Stop operation.
- 4.7 Gradually increase line speed and optimize the performance over the complete range of Line Speeds, Tensions, Taper, Roll Build-up, and materials.


5 Documentation

5.1 Make a complete record of your system set up and file securely with your manuals and drawings for future reference.

BASIC WINDER TYPES WINDER or UNWINDER

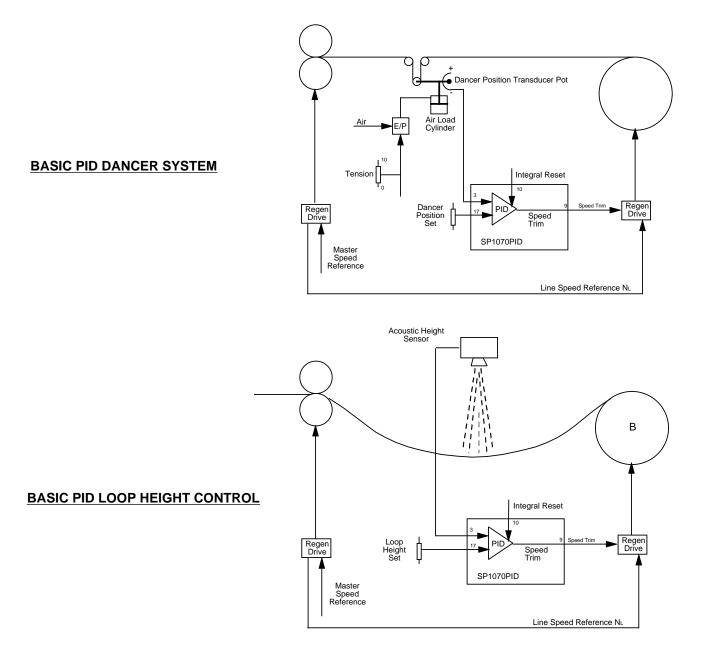

SINGLE WEB <u>or</u> MULTIPLE SLIT WEB SINGLE CORE <u>or</u> TWIN TURRET INDEXING: MANUAL - AUTO SPLICING: MANUAL - AUTO

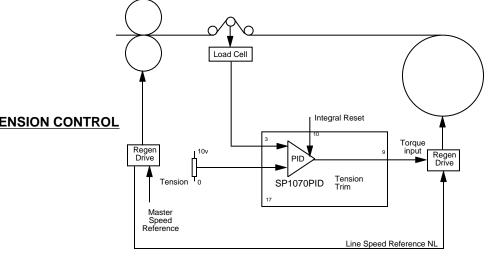
5.2 BASIC CONFIGURATIONS

Center Winder	Center Winder	Center Winder	Surface Winder
Basic Torque Control	Basic Dancer Control	Basic Loadcell Tension	Basic Tension Control
Torque Armature current	Dancer position by PID or	<u>Control</u>	Torque control of support
Tension Torque÷Dia	proportional feedback.	Tension by PID trim speed	rolls
	Tension Dancer force	Optional Taper Tension	Tension Armature
	Optional Taper Tension		current
Requirements:	Requirements:	Requirements:	Requirements:
Standard Drive	Drive + SP1070PID	Drive + SP1070PID	Standard Drive
	Optional: E/P converter	Optional: 430 Dia. Calc.	
	430 Dia. Calc.		

5.3 PERFORMANCE CONFIGURATIONS

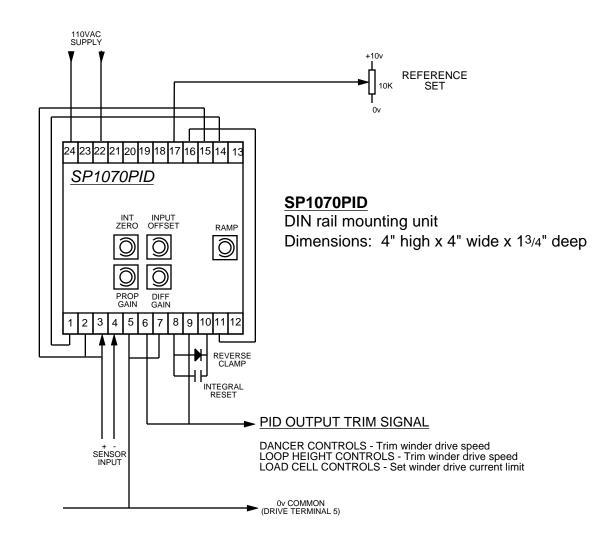
Constant Tension Center	Center Winder	Center Winder	Surface Winder
Winder (CTCW)	Dia Comp. Dancer Control	Dia Comp. Loadcell	Dia Comp. Tension
Dia calculated $N_L \div N_W$	Dancer position by PID or	Tension Control	Control
Torque Armature current	proportional feedback.	Dia by acoustic sensor	Dia by acoustic sensor
Tension Torque÷Dia	Dia by acoustic sensor	Tension by PID trim speed	Torque control of support
with Taper Tension	Tension Dancer force	Optional Taper Tension	rolls
	Optional Taper Tension		Tension Armature
			current
			Optional Taper Tension
Requirements:	Requirements:	Requirements:	Requirements:
Drive	Drive+SP1070PID+Sensor	Drive+SP1070PID+	Drive+430(1/Dia)+
430 CTCW	Optional: E/P converter	Acoustic Sensor	Acoustic Sensor
	430 Taper Tens	Optional: 430 Taper Tens	


5.4 CONTROL FUNCTIONS AVAILABLE


Constant Tension Center	Center Winder	Center Winder	Surface Winder
Winder (CTCW)	Dia Comp. Dancer Control	Dia Comp. Loadcell	Dia Comp. Tension
		Tension Control	Control
Static Friction	Web Break Sensing		
Dynamic Friction	Core Speed Matching	Web Break Sensing	Static Friction
Inertia Compensation	Max & Min Dia limits	Core Speed Matching	Dynamic Friction
Web Break Sensing	Digital diameter memory	Max & Min Dia limits	Inertia Compensation
Core Speed Matching	Electrical-to-Pressure	Digital diameter memory	Web Break Sensing
Max & Min Dia limits	converter.		Core Speed Matching
Digital diameter memory			Max & Min Dia limits
			Digital diameter memory

5.5 BASIC WINDER SYSTEM SPECIFICATIONS

MECHANICAL DATA	
LINE SPEED	MAX FPM MIN FPM
ROLL DIAMETER	MAX IN MIN IN RATIO:
WEB TENSION	MAX LBF MIN LBF
	CONTROL ACCURACY +/ LBF
TAPER TENSION	YES / NO INCREASING - DECREASING%
MOTOR COUPLING	TIMING BELT - GEARBOX - DIRECT
	ESTIMATED FRICTION CHARACTERISTICS
REVERSING	YES - NO
ELECTRICAL DATA	
SUPPLY	PHASE,VOLTS, 50/60HZ
BASIC MOTOR DATA	ARMATUREVDC, FIELDVDC, SPEEDRPM
ENVIRONMENTAL DATA	
	INDOORS or OUTDOORS
	CLEAN - DUST - WATER - EXPLOSION PROOF
DANCER SPECIFICATION	
	DANCER TRAVELINCHES
	DANCER INERTIAMD ²
	TRANSDUCER:K OHMS HIGH O/PV, LOW O/PV
LOAD CELL SPECIFICATION	
	TRANSDUCER: HIGH O/PV, LOW O/PV



Bardac	Title SP1070PID BASIC PID WINDER CONTROLS BLOCK DIAGRAMS	Issue A B	Date 9/11/94 4/1/98
Dardao	Dwg. No. 500298	С	3/25/98
40 Log Canoe Circle, Stevensville, Maryland, 21666 USA Phone (410) 604-3400 Fax (410) 604-3500			

BASIC PID LOAD CELL TENSION CONTROL

SP1070PID SPECIFICATIONS:

Power Supply: 120VAC or 240VAC Dancer Pot Supply: +/-10VDC 25mA max Output: -10V to +10VDC (Output can be clamped for single direction operation.)

Scalable Functions: Derivative Gain Proportional / Integral Gain Position Reference Reference Ramp

Bardac	Title SP1070PID BASIC PID CONTROLS INSTALLATION DRAWINGS Dwg. No. 500299		Date 9/11/94
			4/1/98 3/25/98
40 Log Canoe Circle, Stevensville, Maryland, 21666 USA Phone (410) 604-3400 Fax (410) 604-3500		D	11/2/00
		E	10/30/08